Pascal published a treatise on binomial coefficient . 帕斯克發(fā)表了關(guān)于二項(xiàng)系數(shù)的論文。
The binomial coefficients are ubiquitous in combinational theory . 二項(xiàng)系數(shù)在組合論中有普遍的應(yīng)用。
Prove that no four consecutive binomial coefficients can be in arithmetic progression . 證明不存在四個(gè)連續(xù)的二項(xiàng)系數(shù)成算術(shù)級數(shù)。
On a special binomial coefficient 一個(gè)特殊的二項(xiàng)系數(shù)
The solutions of the high step binomial coefficient type linear differential equation 高階二項(xiàng)式系數(shù)型線性微分方程
binomial coefficient series 二項(xiàng)式系數(shù)的級數(shù)
Furthermore, the modern researches on the identities are investigated which are derived from the binomial coefficients, inversion relations and partition polynomials 同時(shí)從二項(xiàng)式公式、反演公式及分拆公式三個(gè)角度論述了近現(xiàn)代對組合恒等式的尋求和證明。
We establish a class of combinatorial identity involving two sequences and a partial sum of the binomial coefficients, which contain a lot of new and curious combinatorial identities as its special cases 建立一類包含序列與二項(xiàng)系數(shù)部分和的組合恒等式,得到許多新的奇異的組合恒等式。